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ABSTRACT

Computational modelling of audio systems commonly involves
discretising lumped models. The properties of common discreti-
sation schemes are typically derived through analysis of how the
imaginary axis on the Laplace-transform s-plane maps onto the Z-
transform z-plane and the implied stability regions. This analysis
ignores some important considerations regarding the mapping of
individual poles, in particular the case of highly-damped poles. In
this paper, we analyse the properties of an extended class of dis-
cretisations based on Mobius transforms, both as mappings and
discretisation schemes. We analyse and extend the concept of fre-
quency warping, well-known in the context of the bilinear trans-
form, and we characterise the relationship between the damping
and frequencies of poles in the s- and z-planes. We present and
analyse several design criteria (damping monotonicity, stability)
corresponding to desirable properties of the discretised system.
Satisfying these criteria involves selecting appropriate transforms
based on the pole structure of the system on the s-plane. These
theoretical developments are finally illustrated on a diode clipper
nonlinear model.

1. INTRODUCTION

Computational modelling of audio systems is a major topic of in-
terest, including emulation of existing electronic and acoustic sys-
tems such as vintage audio effects or acoustic instruments. When
the dynamics of a physical system are known through its transfer
function, a common procedure is to discretise it using the bilinear
transform or the forward or backward Euler method.

The general properties of those discretisations are often de-
rived from analysing the mapping of the imaginary axis in the
Laplace transform s-plane onto the Z-transform z-plane [1]. Since
these mappings fall into the category of conformal mappings, the
imaginary axis always maps to a circle or a line [2]. Additional
analysis of these transforms can be found in [3]], where a method
to design digital constant-Q filters is presented using hybrid trans-
forms between the bilinear transform and the backward Euler me-
thod. More generally, in the case where a state-space representa-
tion of the system is available, all those methods correspond to dif-
ferent numerical schemes [1} [4], which are well-studied methods
in the field of numerical analysis [S]]. In particular, those methods
are well-studied in terms of numerical accuracy and stability as a
function of the system dynamics and the chosen sampling rate for
linear time-invariant (LTT) systems.

In the audio literature, little attention has been given to the
simulation distortion introduced by those transforms due to the dis-
tortions of pole properties. However, the analysis of the mapping
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of the imaginary axis can offer only guarantees regarding the re-
sponse of LTI systems in a steady-state context. For example, the
magnitude response of an LTI system after discretisation with the
bilinear transform can be shown to correspond exactly to the mag-
nitude response of the original system up to a contraction and dis-
tortion of the imaginary axis [4}16]. In cases where that frequency
distortion is problematic, frequency warping methods can be used
with the bilinear transform to compensate for it [4}, [7]. However,
warping breaks the equivalence between the bilinear transform and
its numerical equivalent, the trapezoidal method, adding additional
errors terms to the transform to achieve frequency matching. Ad-
ditionally, warping requires previous knowledge of the system to
know the needed level of warping. A method was also proposed
in order to derive digital parametric equalizer designs with a non-
zero Nyquist-frequency gain and better match the non-warped re-
sponse of analog equalizers [§]. Those techniques do not con-
sider the distortion introduced in the pole locations, which can pro-
duce noticeable differences in the system response for non-steady
state conditions (e.g. transients, modulated input). Similar obser-
vations have been made in the context of artificial reverberations
regarding the noticeable influence of all-pass filters on the short-
term audio colouration of those effects despite their flat magni-
tude response [9]. Additionally, one must remain careful when
considering the properties of those methods for discretising non-
linear and/or time-varying systems. Other typical filter designs
(e.g. impulse-invariant methods [[10], matched Z-transform [11],
Prony’s method [[7]) based on exact pole placement can improve
the transient behaviour of LTI systems, but they are typically im-
practical in the context of nonlinear and/or time-varying systems.

More advanced systematic discretisation schemes (e.g. high-
order methods, fractional bilinear transform) are described in the
numerical analysis literature [5], or in the audio context, in stud-
ies on physical-modelling-based synthesis [[12} [13]] or filter design
[3L14]. Those methods can often handle systems where the bi-
linear transform and the Euler methods are limited (e.g. strongly
nonlinear systems). However, the bilinear transform and the Eu-
ler methods have been historically preferred as they preserve the
system order, allowing for compact system representation and ef-
ficient computation. Backward Euler and the bilinear transform
also have the property of unconditionally preserving stability and
minimum-phase properties [1, [13]. This proves useful as digital
audio effects work with a prescribed sampling frequency. Another
aspect to consider is the limiting of undesirable transient behaviour
when several systems are cascaded, more so if those systems are
nonlinear and/or time-varying. In this case, the bilinear transform
and the Euler methods are generally preferred to filter design meth-
ods based on exact pole placement, which can be sensitive to the
way the system is implemented, even for LTI systems [1].
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One case where the bilinear transform and the Euler methods
are limited is systems with highly-damped poles. Numerical anal-
ysis literature shows that discretisation of such systems using the
trapezoidal rule shows high-frequency oscillations at its output in
transient mode [15} [16]. Indeed, the mapping of pole contours
with identical damping in the s-plane, while still circles, are not
centred around the origin, meaning their damping in the z-plane
is not frequency-independent [3]. As a result, the properties of a
mapped pole in the z-plane depend on the pole damping in a way
that can noticeably impact the dynamics of the discretised system
transient response. Methods such as frequency warping cannot
compensate efficiently for this despite their use of a priori informa-
tion of the system pole locations in the s-plane. This information
can be available as, for example, we can often know where all the
possible poles of a parametrised equalizer, or all the instantaneous
poles of a nonlinear analog circuit will lie across all the operat-
ing conditions of those systems. However, with such information,
we can imagine a generalisation of the bilinear transform and the
Euler methods that could enforce a wider range of desirable prop-
erties for a discretised system (e.g. stability, pole damping and fre-
quency) under all its known operating conditions.

In Sec. 2 we present a theoretical extension and generalised
analysis of typical discretisations (e.g. bilinear transform) in the
context of the Mobius transforms. In Sec.[3l we generalise the
analysis of s-plane distortion introduced by discretisation and pro-
pose criteria in order to design discretisation schemes alleviating
typical unwanted behaviour. In Sec.[dl we apply those principles
to the discretisation of a typical audio system.

2. DISCRETISATIONS AS MOBIUS TRANSFORMS

2.1. Lumped models

Audio systems can often be represented as single-input single-
output (SISO) LTI lumped models (e.g. analog filters) with input
u(t) and output y(¢) (with Laplace transforms U (s) and Y (s)) can
be described by their transfer function in the Laplace domain [1]:

(S) = Y(S) — Z%:O bmsm
U(s) 271:7:0 e .

This generalises to multiple-input multiple-output (MIMO)
systems with the state-space representation

x(t) = Ax(t) + Bu(t)

ey

2
y(t) = Cx(t) + Du(t) @

and state variables x. The generalised system transfer function
H(s)=C(sI-A)"'B+D 3)

has poles corresponding to the eigenvalues of A [6].
Some nonlinear time-varying systems can also be described in
a state-space form as
x(t) = £(t, x(t), u(?)) (4a)
(t,x(t),u(?))- (4b)

<

C
I
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For a given operating point (¢0, X0, uo), we linearise the sys-
tem around that point using a small perturbation approximation as
the state-space model

X(t) = A()X(t) + B()V()(t)

y(t) = Cox(t) + Dovo(?) ®)

with vo(t) = [(u(t) —uo)”, (t—to), x4]",in which case
we interpret the eigenvalues of Ay as “instantaneous” poles [[13]].

2.2. Transfer function discretisation and Mobius transforms

Computational simulation of LTI systems typically requires digi-
tising their transfer function H(s) (Eq. (3)) at a sampling inter-
val 7', and several methods have been proposed in the literature
[1]]l. Methods such as the bilinear transform (BT), backward Euler
(BE), and forward Euler (FE) have the advantage of being sim-
ple, order-preserving, aliasing-free and independent of the transfer
function form. Those methods correspond to the substitution of s
by T (z) in the transfer function. They can be interpreted as map-
pings z — s = T () (and its inverse s —+ z = T~ '(s)) between
the Laplace transform s-plane and the Z-transform z-plane, with

Tor(z) = 21200, Toe(z) = 5, Toe(2) = 520 (6)

A point in the s-plane is decomposed as s = o + j€2 with
o defined as the damping and €2 as the frequency of that point.
A point in the z-plane is decomposed as z = re?” (r > 0 and
w €]—m,w]) with log(r)/T defined as the damping and w/T as
the frequency of that point.

These mappings belong to the class of conformal mappings
(i.e. angle-preserving transforms) [2]. They also belong to the
subclass of Mdbius transforms which contains all rational order-
preserving mappings. Mobius transforms have the form [17]

_ds—b

cS —a

a+ bzt

m and T_I(S) =

T(z) =
with ad — bc # 0. They map circles (including lines as circles
of infinite radius) in the origin plane to circles (including lines) in
the target plane [2]. Mobius transform coefficients (a, b, c,d) €
C* are defined up to common multiplying factor v € C since
(ya, vb, ye, vd) corresponds to the same transform. A transform
is uniquely defined (up to factor ) by setting the mapping of 3
separate points.

In digital filter design, filters with real coefficients (or equiva-
lently with a conjugate symmetric Fourier transform with respect
to DC) are typically preferred. This corresponds to the use of
symmetric mappings with respect to the real axis (or equivalently
which maps the real axis onto itself). That property is guaranteed
if and only if the transform coefficients (a, b, ¢, d) are all real up
to a common multiplying factor ~y (possibly complex).

Also, we can note that, in both the s-plane and the z-plane,
the upper part of the plane (i.e. points with positive imaginary part
3(+)) corresponds to points with positive frequency (€ > 0 and
w > 0). For this reason, we limit the discussion to transformations
mapping the upper plane of the s-plane to the upper plane to the
z-plane. For real coefficients (a, b, ¢, d), we get:

() = S(s)(ad — be)
J(s)2c? + (a — R(s)c)?

so that S(s) > 0 < &(z) > 0is true if and only if ad — be > 0.

Another possible condition of interest is that the origin s = 0
maps to a DC point in the z-plane (i.e. with w = 0); this property
holds if and only if a and b have opposite signs. We may also want
to consider only mappings such that |2| — oo maps to w — =£7;
this property holds if and only if ¢ and d have same signs.

In the rest of the paper, we consider only Mobius transforms
with real coefficients verifying ad — bc > 0. By construction,
these transforms are all order-preserving and aliasing-free.

(O]
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Figure 1: Circles (in grey) corresponding to constant o (top) and
constant () (bottom) in the z-plane. The black horizontal axis cor-
responds to the real axis in the z-plane, mapped from the real axis
Q = 0. The black circle corresponds to the region mapped from
the imaginary axis o = 0. In the case of the bilinear transform, the
circle correspond to the unit circle, withd/c = 1 and b/a = —1.
When following the dashed arrows, / indicates increasing quan-
tities and "\ decreasing ones.

2.3. Finite difference methods

Computational simulation of a system defined by Eq. (@) is a typ-
ical problem in numerical analysis [1,[5]]. To digitise the system
at a sampling interval ', we can compute the next sample x,,
at t, = n1 by applying common numerical methods. One-step
methods correspond to methods which only use quantities evalu-
ated at t,,—1 and t,, including £, = f(tn,Xn,un) and f,_1 =
f(tn—1,Xn—1,Un—1). Such methods include:

e forward Euler: x, = x,—1 + T f,_1,
e backward Euler: x,, = x,_1 + T f,, and
e trapezoidal rule: x, = xp—1 + 7T (£, + f—1) /2.

In the case of LTI systems, these methods are equivalent to
order-preserving mappings of the transfer function, with forward
and backward Euler being equivalent to the mappings in Eq. (6)),
and the trapezoidal rule being equivalent to the bilinear transform.

imag(s)

imag(s)

real(s)

Figure 2: Circles (in grey) corresponding to constant r (top) and
arcs corresponding to constant w (bottom) in the s-plane. Darker
ares correspond to w € [0, w]. The black axis corresponds to the
real axis in the s-plane, mapped from w = 0 and w = +7. The
black arc corresponds to the w = /2. The black vertical line
corresponds to r = |d/c|. In the case of the bilinear transform,
the arc belongs to the unit circle and the vertical line corresponds
to the imaginary axis, withb/d = —=2/T and a/c = 2/T.

Like the M6bius transforms, these methods can be expressed as
axn +bxp_1 =cf, +df_1 )

where the parameters (a, b, ¢, d) are defined up to a constant factor.
A common way to classify these methods is accuracy, i.e. the
order in T of the leading error term of the Taylor series expansion

aXn + bxn—1 — cfn —dfa_1 = (a + b)Xn-1 + aTXn-1
— (4 d)kn—1 + (L2 — T)%kno1 + O(cT? + aT?).

By cancelling some of those terms, we obtain methods with
various orders of accuracy. The only 2nd-order method that can-
cels the terms in x, %, and X corresponds to the trapezoidal rule.
1st-order methods cancel the terms in x and x with a = —b and
¢+ d = a7, and include, among others, backward Euler (¢ = aT
and d = 0) and forward Euler (¢ = 0 and d = aT). All other
methods are Oth-order, even if some of the terms in Eq. (I0) can
still be cancelled (e.g. the term in x if we have a = —b).
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It can seem counter-intuitive to consider Oth-order methods,
meaning that error does not unconditionally vanish as we decrease
the sampling interval. However, we can observe that:

e in audio, the sampling period is usually fixed so that higher-
order error in 1" does not always translate in less error for
the discretised system,

e the true solution for typical conditions are often such that
[Ix(t)]| =t—>o0 0 and ||X(t)]] —¢t—o0c O (e.g. impulse
response) so that the numerical solution error vanishes at
t — oo for all those methods,

e for other conditions when ||x(¢)|| —+—o O (e.g. step re-
sponse) but ||x(¢)|| #¢—o0 0, the error for methods with
a = —b also vanishes at ¢ — co.

It can also seem counter-intuitive to consider 1st-order meth-
ods, when a 2nd-order method is available. However, the usage of
the backward Euler method shows it is already standard practice
to trade numerical accuracy for other types of desirable properties.

Here, it seems logical to restrict to methods such that a # 0 to
ensure that the term in x,, is present. We can set it to 1/7" as the
coefficients are defined up to a multiplying factor.

3. POLE MAPPING AND WARPING

3.1. Bilinear transform frequency warping interpretation

In digital filter design, the bilinear transform is typically parame-
terised by a gain factor 1 as [7]

1—2z71

an
We interpret ) as equal to 2/7" with T” a parameter potentially
different from the sampling period 7" such that:

21—z7"1

T =Fi=

(12)

For the canonical bilinear transform (T' = 1", see Eq. (@), we
know that the imaginary axis ¢ = 0 is mapped to the unit circle
r = 1 with the frequency distortion [4]

w=2tan " (QT/2) /T . (13)

For any T’, those transforms map the imaginary axis to the
unit circle, the DC point s = 0to z = 1, and |s| — co to z = —1,
with different distortion of the frequencies. One additional map-
ping condition between a point s on the imaginary axis and a point
z on the unit circle can be used to uniquely define the desired fre-
quency distortion. The frequency warping method aim at selecting
T’ so that the point so = jQo (only for Qo € ]—, 7[) maps to
20 = ¢& Q0o (i.e. Qo = woT), meaning that the frequencies of sg
and zo match [7]. This is achieved with

T' = 2tan(Q0T/2)/Qo. (14)

Warping can be interpreted in the context of numerical meth-
ods by looking at the equation

z(t) = jQox(t), z(0) =1 (15)
and discretising it with the trapezoidal rule

1+ jQ0T/2

1—jQoT/2" (16)

Tn =&Tp—1, xo =1 with &=

The solutions to Eq. (I3) and Eq. (I6) are z(t) = eIt (¢ >
0) and z,, = £ (n > 0). Since £ = e/“°T with

wo = 2tan" " (QT/2) /T, a7

the solution to the discretised system presents a frequency-depen-
dent phase lag due to eigenvalue distortion introduced by the dis-
cretisation [5]. That distortion matches the frequency distortion
from the bilinear transform, meaning that the frequency warping
can be interpreted in the numerical analysis framework as:

e Modifying Eq. (#a) so that the eigenvalues of the system
shift by a multiplicative factor of 7"/T. In filter design,
that is the case where the filter coefficients are pre-warped
and the canonical bilinear transform is used, or equivalently

e Changing the time step for the discretisation of Eq. (a) to
T’ (q,, is quantity q evaluated at nT" instead of nT') as

(n = xn-1)/T = (£ + £a-1)/2

/ L e (18)
xnfl)/T - (fn + fnfl)/2

b—>(x;—

with f, = f(tn,%n,u,) and £, = f(¢,,x},,u},), and
modifying the discretisation of Eq. (D)

Yn :g(tn7xn7un) Hyn :g(tln7xln7u;)7 (19)

effectively creating a mismatch between the time steps of
y and that of (¢,x,u). In filter design, that corresponds to
changing T in T” in the bilinear transform.

Effectively, frequency warping in the bilinear transform is
equivalent to compensating for the phase lag introduced by the
trapezoidal rule in the numerical solution of Eq. (I3). As the phase
lag is frequency-dependent, it can only be cancelled for a single
frequency. This process can be thought to be similar to the issue
of minimising numerical dispersion when modelling of the 2D/3D
wave equation using finite-difference meshes [12}[18].

3.2. Mapping equations

The analysis presented in the previous section focuses on the map-
ping of the imaginary axis. However, additional attention can be
given to the mapping of all the points of the s-plane in order to fur-
ther generalise the concept of warping. For any point s = o + j€2,
the transform defined by (a, b, ¢, d) maps it to z = re?* with

- 02d? + (b—od)?
TV Q2e2 + (a—oc)? (20)

tan w Q(ad — be)
2 " (a—co)2(b—do)? + Q2cd — r((a — co)? + Q2c?)

We can derive the contours resulting from the mapping of
regions of interests, as shown in [3] for the bilinear transform,
backward Euler and forward Euler. For constant damping o, s
is mapped onto a circle Cs (s, Ro) (Fig.[D) such that

ngl<da_b—g) and R, =

2 \a—co c

ad — bc
2|c(co —a)|”

@n

For constant frequency €2, s is mapped onto a circle (Fig. 1)

ad — be
2¢2|Q|

d .ad — bc

Ca = ¢ +J 2¢2Q)

and Rq = (22)
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Figure 3: Trajectories of pole p in the z-plane for 3 different constant frequencies §) as a function of o (0.1 kHz: light grey X, 1 kHz:
medium grey +, 10 kHz: dark grey o). Top: log(r)/T as a function of o (The dashed line indicates log(r)/T = o); middle: w/T as a
Sfunction of o; bottom: location of p in the z-plane as a function of o. The imaginary axis o = 0 maps to the dashed circle; p starts on the
right part of the dashed circle for o = 0 and travels towards the left and the real axis as o increases, as shown by the dotted arrows.

such that the centre ¢ moves along a vertical line going through
the mapped point for infinity, z = —d/c.

For both o and 2, we see that all the circles contain the mapped
point for infinity —d/c and asymptotically shrink towards it, with
their centre ¢ moving along a line (vertical for constant €2 and hor-
izontal for constant o). We can also analyse the inverse mapping
in order to analyse regions generating digital filters with constant
parameters. For constant damping log(r) /T (or equivalently con-
stant 7), 2z is mapped onto an arc (Fig.2) such that

. acr? — bd
212 _ g2

r(ad — be)

and R, = 2 = |

(23)

r=

For constant frequency w/7T and w > 0, z is mapped onto the
part with non-negative imaginary part (¢ > 0) of a circle (Fig.[2)
such that

ad — be
2cd tan w

ad — be

ad+bc .
2|ed sin w]

Cw = e and R, =

(24)

and for w < 0, z is mapped onto the part with non-positive imagi-
nary part (o < 0) of that same circle (Fig. ).

Similarly to the forward mapping, for both r and w, we see
that all the circles have their centre organised around a single line
(vertical for constant w and horizontal for constant 7).

3.3. Generalised warping

For the general class of Mobius transforms, three different map-
ping conditions between s- and z-planes define a unique Mobius
transform (up to a multiplicative factor). In typical transforms (BT,
BE, FE), we set mapping conditions for the origin (s = 0) and in-
finity (]s| — 00), so that one mapping degree of freedom remains.
However, as mentioned in Sec. we wish to limit ourselves to
Mobius transforms with real coefficients, which means that not all
third mapping conditions can be fulfilled.

While we cannot control the mapping of any additional point,
other warping processes can be considered. For example, if a
transform with real coefficients and ad—bc > 0 maps s1 — z1 and
S2 — 22, then there is a unique circle Cs centred on the real axis
that maps to C.. such that {s1, s2} € Cs and {z1, 22} € C.. Those
two circles intersect the real axis in two pair of points (31, 1) and
(82, Z2) mapped to each other. Recall that we can force the map-
ping of an additional point on the positive imaginary axis s = j{2
(Q > 0) onto any point of the upper unit circle z = e/ (w €
[0, 7[) for the bilinear transform using frequency warping. In the
same way, we can show it is possible to find a Mobius transform
with real coefficients and ad — bc > 0 that will map an additional
point p of the upper arc of Cs to any point pg on the upper arc
of C.. The warping can be done by altering a single parameter x
such that the warped transform corresponds to (xa, xb, ¢, d). This
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Figure 4: Acceptable pole locations for a given o according to Eq. 29) (hatched) and Eq. BQ) (grey).

approach can then allow for the design of transforms using similar
principles to Sec.[3.1l interpreting warping as changing the phase
lag introduced by a given Mobius transform in the numerical solu-
tion of #(t) = px(t). Phase lag cancellation (Q, = wp,/T’) can
be achieved for only a subset of applicable frequencies €2,.

Another option would be to remove the condition either for
the origin or infinity, in which case we can exactly specify the
mapping of another point s. In this case, the transform coefficients
are still ill-defined. An additional condition is needed, for example
by cancelling one or several of the terms in Eq. (I0), if it does not
conflict with the mapping conditions. Otherwise, we can also find
sets of transforms that would satisfy an alternative set of criteria
such as the one presented in the next two sections.

3.4. Damping monotonicity conditions

In the rest of the paper, we consider only transforms of the form
(a,b,c,d) = (42, —1£2 1, ), even though all the discussed
properties extend readily to all previous Mobius transforms. This
subclass of transforms includes the bilinear transform (o = 1), the
forward (v — o0), and the backward (o« = 0) Euler methods. As
numerical schemes, they are all 1st- or 2nd-order schemes and can

be viewed as forward Euler with an added dissipative term [16]:

Xn = Xn—1+ T(fn + Oéfnfl)/(l + Oé)
=Xn 1 +TE 1 +T%%0_1/(1 4 a)+O(T?).

FE dissipative term

(25)

We also assume we have knowledge of a region in the s-plane
enclosing all the possible poles of the studied system (or all the
possible instantaneous poles for systems modelled as Eq. (@)).

Through such transform, a pole p is mapped to pq as

w _ l+a+alp

p=o iR pa=re T+a—Tp

(26)

The mapping also generates poles at z = —« from the map-
ping of the zeroes of the continuous systems, but these poles are
all cancelled by the zeroes at z = —a from the mapping of the
poles if we only consider proper systems [7]. By adapting Eq. @20)
to the class of transforms considered here, the mapping between
quantities (o, 2) and r simplifies to:

s (1+a+aTo) + (aTQ)?
T T +a-To2+ (TO)R @n

From Egs. 20) and (27), we can observe in more details the
behaviour of the trajectories (Fig.[3)) of the poles for different con-
ditions such as log(r)/T and w/T at constant 2 as o decreases
from zero into the region of stable poles o < 0.

In the plots of log(r)/T at a constant o we observe that while
the continuous-time and discrete-time damping have a monotonic
relationship for lower €2, we ultimately reach an inflection point
for which an increase in the continuous-time damping results in
a decrease in discrete-time damping. Passed the inflection point,
the discrete-time frequency moves quickly towards 7, so that pg
becomes a resonant (and possibly unstable) pole at the Nyquist fre-
quency. For a given €2, it is possible to obtain an analytical expres-
sion of that inflection point o, by solving the equation

%:2%%—22:0. From Eq. @7), we get two solutions:
214 D+ (22102
L@ -veVarrEarar o

2aT

We can see that o > 0 and o— < 0. Also, o and r have a
monotonic relationship for any o € [o—, o4 ]. In the s-plane, this
monotonicity condition is verified inside a rectangular hyperbola

of semi major axis (O;ZIT) ® and centre (%, 0):
2 2 2\ 2
a -1 2 (a+1)
_ _ < (=T
(a 5T ) Q"< ( 5T foraa >0, (29)

which becomes the half-plane o > —% for a — oo (i.e. forward
Euler) and o € R for @ = 0 (i.e. backward Euler).

If we have prior knowledge of the pole possible locations (e.g.
from the physics of the system), we can select « so that all poles lie
in that region, and consequently ensure the monotonic relationship
between o and r at constant . From Eq. (23), we can interpret
this process as adding enough dissipation to the discretised system
in order to move its poles away from the Nyquist frequency.

3.5. Stability conditions

Another condition to verify, in particular if we also want to allow
for values o > 1 (i.e. discretisation schemes that can produce un-
stable discrete-time poles from stable continuous-time poles such
as forward Euler), is that all the potential poles will be stable, i.e.
that » < 1. While complete stability analysis of general time-
varying system cannot be guaranteed through the sole analysis of
its instantaneous poles [19]], a preliminary analysis is generally
done by verifying the condition » < 1 for those poles [13]. In
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Figure 5: Diode clipper circuit (left: original; right: linearised).

the s-plane, the condition is verified over the region described by:

2 2
(0’— %H—O‘) + Q%> (iu—a) fora € [0,1]

11— T1l-«
9 9 30)
(O’*%}t—g) +QQ<<%‘;‘—E) fora > 1,

which degenerates in the half-plane o < 0 for a = 1.

Again, with prior knowledge of the pole possible locations, it
is possible to ensure that all the poles will lie in those two regions
by selecting o appropriately, so that the system stability is guaran-
teed for all potential poles of the system. The intersection of this
condition with the monotonic damping condition in the s-plane
can be seen in Fig. Hlfor different values of a.

4. SIMULATIONS

We study the diode clipper in Fig. [3] [20] to illustrate those con-
cepts. Following the Shockley diode law, the current / through a
diode is modelled as a function of the voltage U across a diode as

I=fU)=1. (eU/Vf - 1) . 31)

If we measure the output voltage U, around the diode as a
function of the driving voltage U;, the system is described through
the state-space representation with state variable Uyg:

Us = (Ui — Ua)/(RC) — f(Ua)/C

32
Uo=Ug. 32)

At a given time instant to, the diode nonlinear characteristic
can be linearised into a small perturbation model around Ugp with
aresistor 24 in parallel with a constant current source I4 as

f(Ud) ~ Ud/Rd — Id
Ry = Uge Vao/Ve 1, (33)
I = 1. (1 + (Uao/Vi — 1)eUd0/Vt)

and the linearised state-space representation becomes
. Uy 1 1 U;
1=~y L ]
‘T TCR[Ry) " LRC Tl |14 (34)
Uo=Ug.
The linearised system has one real pole at
1 /1 1 1 (1 Is yy/w
e - I Rl . 35
P C(R+Rd) C(R+V}€ 59

In general, it is not possible to know analytically the range of
output voltages of this system, but we can estimate it by looking at

Error

0 0.1 0.2 0.3 0.4 0.5 0.6

Frequency

Time (ms)

Damping

0 0.1 0.2 0.3 0.4 0.5 0.6
Time (ms)

Figure 6: System response to a U;(t) = 0.5u(t) for « = 0 (light
grey +), 0.11 (medium grey x) and 1 (dark grey o). Top: refer-
ence ULt (dashed) and signed error U, — Ut for each o in log-
amplitude; middle: instantaneous pole frequencies V' (dashed)
and & /T for each a; bottom: instantaneous pole dampings oref
(dashed) and log(#) /T for each c.

the steady-state response of the system at maximum and minimum
input voltage U; as the solution of

0= (Ui = Ua)/(RC) — f(Ua)/C (36)

that can be found empirically. For a N914 switching diode (I; =
2.52nA, V; = 25.85mV), R = 2.2k2 and C = 0.01 uF, hav-
ing an input voltage in [—0.5 V, 0.5 V] produces steady-state out-
put voltages in [—0.5V, 0.275 V]. As a result the pole p has a
continuous-time damping o in [—4.42 x 10°, —4.55 x 10%].

To ensure that we pick a Mobius transform of the form
(a,b,e,d) = (HTO‘7 —HT‘*, 1, @), with « such that all possible
continuous-time pole locations p = ¢ (o < 0) fall inside the hy-
perbola described in Eq. (29), we have the condition:

Vo, —(a+1)/(aT) <o < —(a+1)/(aT) < omin

37
& a(Tomin +1) > —1. ©n

For o < —1/T, this condition is always satisfied. Hence, one
way to avoid issues with the mapping of the poles is to reduce the
sampling interval T (e.g. oversample). For o < —1/T, the condi-
tionis & < —1/(14Tomin). For our system sampled at 44.1 kHz
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Figure 7: System response to U;(t) = 0.5sin(2940mt)u(t) (first
cycle) for o = 0 (light grey +), 0.11 (medium grey x ) and 1 (dark
grey o). Top: reference U (dashed) and signed error U, — UL
for each « in log-amplitude; middle: instantaneous pole frequen-
cies Q"' (dashed) and & /T for each «; bottom: instantaneous
pole dampings o™°* (dashed) and log(+) /T for each c.

(T =~ 22.7us), the condition to have pole damping monotonicity is
a < 0.11. The stability condition translates into a less tight bound
a < (Tomin + 2)/(Tomin — 2),i.e.a S 1.5.

We study the impact of instantaneous pole locations by sim-
ulating the system response to a step function U;(t) = 0.5u(t)
(Fig.[6) and the onset of a sinusoid U; (¢) = 0.5 sin(29407t)u(t)
(Fig. [7), with unit step function u(t) = 1{t > 0}. As reference
Uzt for the system response, we compute the solution to Eq. (32)
using the variable-step Runge—Kutta solver ode45 from MAT-
LAB with absolute and relative accuracies set to machine preci-
sion and a maximum time step of 7°/8 (resampled using piece-
wise cubic interpolation). Then, we compute the response U, of
Eq. (32) after discretising it using & = 0 (BE), @ = 1 (BT) and
a = 0.11 (nearly critical damping monotonicity condition). We
solve all implicit update equations using Newton’s method [1] to
machine precision. For each simulation, we compute the (signed)
error U, — U, and the coordinates (damping and frequency) of
the reference instantaneous poles in the s-plane (o™ and Qf,
computed using UZ°f as approximation to U, (t)), and of the dis-
cretised systems in the z-plane (log(#)/T and &/T). The sim-

ulations show how the bilinear transform instantaneous pole fre-
quency shifts to /7 when the voltage across the diode becomes
high, which results in spurious high-frequency oscillations. On
the other hand, backward Euler and o = 0.11 instantaneous pole
frequencies are always O so that no oscillations are triggered.

5. CONCLUSION

In this paper, we presented an generalisation of common methods
for discretising transfer functions using Mobius transforms. We
study the properties of these transforms when used as discretisa-
tion methods in the context of mapping functions from the s-plane
to the z-plane and in the parallel context of single-step numeri-
cal methods for state-space representations of systems. We intro-
duce general considerations regarding the distortion of pole prop-
erties (damping and frequency) as a function of the transform co-
efficients when mapping from one plane to the other. Finally, we
present some criteria based on desirable properties of the pole lo-
cations. This allows us to design Mobius transforms that yield dis-
cretised systems with those properties as a function of the location
of all possible continuous-time system poles. These concepts are
illustrated through the simulation of a typical diode clipper circuit,
using small-perturbation analysis to predict the transient behaviour
of the system as a function of the pole location.
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